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The trapping of excitations in systems coupled to an environment allows one to study the quantum to
classical crossover by different means. We show how to combine the phenomenological description by a
non-Hermitian Liouville-von Neumann equation �LvNE� approach with the numerically exact path integral
Monte Carlo �PIMC� method, and exemplify our results for a system of two coupled two-level systems. By
varying the strength of the coupling to the environment we are able to estimate the parameter range in which
the LvNE approach yields satisfactory results. Moreover, by matching the PIMC results with the LvNE
calculations, we have a powerful tool to extrapolate the numerically exact PIMC method to long times.
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I. INTRODUCTION

Recent years have seen growing interest in coherent en-
ergy transfer. For instance, it has been pointed out that pho-
tosynthesis might benefit from quantum mechanical features
of the transfer of excitations created by the incoming solar
energy �1�. A series of papers has modeled coherent dynam-
ics in the light-harvesting system of the photosynthetic unit
showing that the coupling to an environment does not nec-
essarily destroy all coherent features—even at room
temperature—but also can support the coherent transfer of
excitations �2�. The majority of these studies use the Lind-
blad form of the Liouville-von Neumann equation �LvNE�
for the reduced density operator of the system where the
environmental degrees of freedom have been traced out �3�.
However, this approach is only valid in a limited parameter
range of the coupling to the environment.

In contrast, rapid experimental advances allow to manipu-
late and control ultracold atoms to a large extent. This offers
the possibility to study coherent transport and the effect of
environment changes �e.g., an increase in the temperature�.
An ideal system to study the dynamics of excitations are
�frozen� Rydberg gases �4�, whose atoms can have complex
spatial arrangements, for which the coherent dynamics can
be efficiently modeled by continuous-time quantum walks
�5�.

Moreover, it is possible to adjust the properties of specific
�“special”� single atoms such that the excitation gets to be
absorbed at these atoms �6,7�. In this way they mimic the
reaction center �RC� of photosynthesis, where the excitation
gets trapped and further processed. Both systems can be
viewed as being donor-acceptor units, where the excitation is
created at the donor �“normal” Rydberg atoms, light-
harvesting complex� and gets absorbed at the acceptor �spe-
cial Rydberg atoms, RC�. The decay of the excitation at the
acceptor allows to globally monitor the transport dynamics.

While the LvNE approach allows for a phenomenological
modeling, other methods treat the system and the coupling to
the environment in a microscopic manner. Our method of
choice is the path integral Monte Carlo �PIMC� technique,
see, e.g �8,9�, which can be applied for arbitrary system-
environment coupling strengths. However, unlike the LvNE
approach, the real-time PIMC method is plagued by the no-

torious dynamical sign problem �10�, which significantly
limits the time scales accessible to PIMC simulations. How-
ever, by combining the LvNE and the PIMC methods we are
able to study excitation dynamics and trapping over large
time scales and improve the numerical accuracy of our re-
sults.

Our model system is a dimer, represented by two coupled
two-level systems �TLS�, one of which acting as trap, the
dimer being coupled to the environment. By assuming not
too strong couplings to the environment and a single initial
excitation of one of the TLS, one can map the two TLS onto
a single TLS, if, without the trap, the probability of finding
the excitation in the system is conserved �11�. We note that
various systems with, e.g., radial symmetry and a trap in the
center can effectively be mapped onto the dimer if initially
the excitation is homogeneously distributed over the periph-
ery �12�.

II. COHERENT EXCITON TRAPPING

In general, we consider the Hamiltonian of a network of N
nodes, where each node represents a single two-level system.
Let H0 be the Hamiltonian without traps. The accessible Hil-
bert space is completely characterized by the basis states �j�,
which are associated with excitations localized at the nodes
j=1, . . . ,N. Within a phenomenological approach, the
Hamiltonian, which incorporates trapping of excitations at
the nodes m�M, M� �1, . . . ,N�, is given by H	H0− i�,
where i�	 i�
m�m��m� is the trapping operator, see Ref. �6�
for details. As a result, H is non-Hermitian and has N com-
plex eigenvalues, El=�l− i�l �l=1, . . . ,N� where �l�0, and

N right and N left eigenstates, denoted by ��l� and ��̃l�,
respectively. The transition probability from node j to node k
is then given by

�k,j�t� = �

l

exp�− �lt�exp�− i�lt��k��l���̃l�j��2
, �1�

so that the negative imaginary parts �l of El determine the
temporal decay. The mean survival probability ��t� of an
excitation in the presence of M trap nodes is a global prop-
erty of the network and is defined as
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��t� 	
1

N − M


j�m



k�m

�k,j�t� , �2�

i.e., ��t� is the average of �kj�t� over all initial nodes j and
all final nodes k, neither of them being a trap node.

Liouville-von Neumann equation

The Schrödinger equation can be recast into the Liouville-
von Neumann equation �LvNE� when considering the den-
sity operator �. For Hermitian Hamiltonians H0, one has �̇
=−i�H0 ,��, where �· , ·� is the commutator. Now, for the non-
Hermitian Hamiltonian H, one obtains

�̇ = − i�H0,�� − ��,�� , �3�

where �· , ·� is the anticommutator.
Introducing the coupling to the environment naturally

complicates the situation. However, under certain conditions
one can employ the so-called Lindblad form of the LvNE,
where the Lindblad operators specify the coupling �3�. Con-
sider now Lindblad operators that can be written as 
	 jL j,
where 	 j is a fixed decay rate. Assuming all rates to be equal,
	 j 		 for all j, the LvNE reads

�̇ = − i�H0,�� − ��,�� − 2	

j

�� − �j���j��L j . �4�

The rate 	 can be estimated from the spectral density J�
�
describing the environment within the Caldeira-Leggett
model �13� at a given temperature T. Taking J�
�
=2��
 exp�−
 /
c� and using the Markov approximation
one arrives at 	=��kBT �3�. One has to bear in mind that
Eq. �4� is an approximation with a limited range of validity:
For a very large-coupling strength 	, Eq. �4� leads to the
quantum Zeno limit rather than to a classical master/rate
equation. In the following, we will consider Lindblad opera-
tors which are given by projection operators of the type L j
	�j��j� �3�.

III. DIMERS WITH TRAPS

In the sequel, we will consider a dimer which is coupled
to an external bath. This system allows to solve Eq. �4� ana-
lytically and, moreover, to compare the approximate LvNE
results to the numerically exact PIMC calculations. The
Hamiltonian of the dimer without any coupling to the sur-
roundings can be expressed through the Pauli matrices �z
and �x,

H = E1 − V�x − i
�

2
�1 − �z� , �5�

where E is the onsite energy, which we choose to be the
same for both nodes, and V is the coupling between the two
nodes. It is easily verified that the eigenvalues are

E� = E � Ve�i
 = E � 
V2 − �2/4 − i�/2, �6�

where 
=arcsin�� /2V�. For �→0 �
→0� this yields the
correct eigenvalues E�V of H0. Note that for ��2V, the
negative imaginary part of E� is identical for both eigenval-

ues, i.e., �+=�−=� /2. The biorthonormalized eigenstates of
H are of the form

���� 	
1


2 cos 

� e�i
/2

�e�i
/2 � �7�

and

��̃�� 	
1


2 cos 

� e�i
/2

�e�i
/2 � , �8�

where the phases 
 depend on � such that in the limit �
→0, one recovers the eigenstates of H0.

We note, however, that finding the biorthonormal basis set
is not necessary for the following calculations. One just has
to require that the basis sets of H and H† are orthonormal,
respectively. In this way, one diagonalizes H and H† sepa-
rately, which in the end leads to the same eigenvalues and
eigenstates as the approach described above.

When the coupling to the environment vanishes �	→0�,
one obtains the survival probability directly from the eigen-
states and eigenvalues of H. For ��2V, one has

��t� = e−�tcos2�
 + tV cos 
�
cos2 


�for 	 = 0� . �9�

We note that for values ��2V, the dimer is overdamped.
When considering the dimer without traps ��=0� but

coupled to the environment, Eq. �4� simplifies and, from the
solution for �, one obtains the transition probabilities

�1,1
�0��t� =

1

2
+

e−	t

2
�	 sin�t
4V2 − 	2�


4V2 − 	2

+ cos�t
4V2 − 	2�� �for � = 0� �10�

and �2,1
�0��t�=1−�1,1

�0��t�. For 	→0, one recovers the simple
oscillatory behavior of the transition probabilities �namely,
lim	→0 �1,1

�0��t�=cos2�Vt��. For 	�0, i.e., with coupling to
the surroundings, the transition probabilities still show oscil-
lations superimposed on an exponential decay in time which
tends to the classical equipartition value of 1/2.

In order to combine the results of Eq. �9�—we will only
focus on values ��2V at this stage—and Eq. �10�, we ex-
pand in both equations all terms except the exponentials to
first order in � and 	, respectively. Note that for Eq. �9�, we
obtain a product of exp�−�t� and cos2 Vt, which is the simple
oscillatory behavior of the dimer without trap. Now, the cou-
pling to the environment affects all transitions but still con-
serves probabilities. Therefore, we replace the term cos2 Vt
by the expansion of Eq. �10�, by which we obtain

��t� � e−�t�1,1
�0��t�

� e−�t�1

2
+

e−	t

2
�cos �2Vt� +

	

2V
sin �2Vt��� .

�11�
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PIMC

In order to corroborate our results, we will compare the
phenomenological LvNE approach described above to the
numerically exact PIMC calculations based on a microscopic
modeling of the dissipative environment. This allows to
judge for which parameter range the approximation by Eq.
�4� delivers satisfactory results.

When coupling the dimer to a bath, the total Hamiltonian
reads Htot=H+HI+HB, where the dimer-bath coupling and
bath are described in the framework of the Caldeira-Leggett
model �13�,

HI + HB = − �z

�

c�X� + 

�
� P�

2

2m�

+
1

2
m�
�

2X�
2� . �12�

Here, P� and X� are the momentum and position operators of
the bath degrees of freedom, respectively, while m� and 
�

denote their mass and frequency. The counter term, which
prevents a renormalization of the free dimer’s energy levels
due to the environmental coupling �14�, is absent in Eq. �12�
since it reduces to a physically irrelevant constant in the case
of a two-level system. After tracing out the environmental
degrees of freedom, the onsite population of node �n� be-
comes

�n,1�t� =� D�̃��̃�t�,n exp� i

�
S��̃� − ���̃�� , �13�

where �̃ denotes a closed quantum path in terms of the
eigenstates of �z with �̃�0�=−1 �referring to the initial
preparation in node �1��, and S��̃� is the action of the free
dimer. The influence of the environment is summarized in
the Feynman-Vernon influence functional ���� �15�, which
is completely determined by the environment’s spectral den-
sity,

J�
� =
�

2�


�

c�
2

m�
�

��
 − 
��; �14�

for further details, we refer to Ref. �14�.
As the exact dynamics Eq. �13� cannot be calculated ana-

lytically, one has to resort to a numerical evaluation of the
path integral. Here, the PIMC method has proven to be a
promising approach to obtain numerically exact results even
in regions of parameter space where approximative methods
fail �for details, see, e.g., Refs. �8,9��. In our case it is
straightforward to adopt the approach presented in Ref. �9�
once the free dimer’s forward and backward propagators,
which define S��̃�, are expressed according to

�n�exp�− iHt/���n�� = 

�=�

�n������̃��n��e−iE�t/�,

�n��exp�iH†t/���n� = 

�=�

�n�������̃��n�eiE�
� t/�, �15�

which, even for ��0, are complex conjugate to each other.

IV. COMPARISON OF LVNE TO PIMC

Figure 1 compares the survival probabilities of a dissipa-
tive dimer obtained from the approximative LvNE approach

to the numerically exact PIMC calculations for a bath with
ohmic spectral density �14� with exponential cutoff, J�
�
=2��
e−
/
c. The initial condition is �1,1�0�=1, i.e., at t
=0 the system is localized in the nontrap node 1 of the dimer.
Here, the onsite energies E and the coupling elements V have
been taken to be equal, E=V=1, while the temperature is
fixed to kBT=V, and we set 
c=5V.

For small trapping strength ��=0.1� and vanishing cou-
pling to the environment ��=0�, Fig. 1�a�, the PIMC calcu-
lations coincide with the result of Eq. �9�. A moderate in-
crease in the coupling ��=1 /10�, Fig. 1�b�, still leads for Eq.
�4� �solid lines� and Eq. �11� �dashed lines� to results that are
in excellent agreement with the findings of the PIMC calcu-
lations �symbols�. When increasing the coupling further to
�=1 /4, Fig. 1�c�, however, the approximate solution, Eq.
�11�, begins to deviate from the LvNE and the PIMC calcu-
lations, which are still in very good agreement.

As the numerical effort of real-time PIMC simulations
grows exponentially with time, they can cover only short-to-
intermediate time scales. However, the agreement between

0 10 20 30 40 50

time t [V
-1

]

0

0.2

0.4

0.6

0.8

1

Π
(t

)

α=0
α=1/10
α=1/4
α=10

0 1 2 3 4 5 6 7

time t [V
-1

]

0

0.2

0.4

0.6

0.8

1

Π
(t

)

PIMC
LvNE
Eq. (11)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Π
(t

)

PIMC
LvNE
Eq. (11)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Π
(t

)

Eq. (9)
(a)

(b)

(c)

(d)

α=0

α=1/10

α=1/4

FIG. 1. �Color online� PIMC results �circles� for a dimer with
�=0.1 and different system-bath couplings �=	 /�: �a� �=0, �b�
�=1 /10, and �c� �=1 /4. The solid lines represent the numerical
solution of the LvNE equation, the dashed lines show the corre-
sponding analytical results obtained from Eq. �9� for �=	=0 and
from Eq. �11� for �=1 /10 and �=1 /4. The dotted blue line shows
the long-time limit ��t��exp�−�t�. Panel �d� shows the corre-
sponding long-time behavior of the numerical LvNE solution for
the three different values of � and additionally the behavior for
large couplings �=10.
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the LvNE and the PIMC calculations in the weak coupling
regime allows to compensate for this shortcoming, by using
at longer times the LvNE results, see Fig. 1�d�.

As mentioned earlier, strong couplings 	 in the LvNE
lead to the Zeno limit, and therefore disagree with the large-
coupling/high-temperature behavior of the PIMC formalism.
Figure 1�d� shows ��t� for �=10 �dashed-dotted line�,
which clearly deviates from the long-time behavior of the
curves for small � values. This corroborates the fact that the
LvNE in the Lindblad form only yields the correct long-time
behavior for rather weak couplings to the environment.

For �=1 /10 and varying �, Fig. 2 compares ��t� ob-
tained from the numerical solution of the LvNE to the results
of the corresponding PIMC calculations for the same initial
condition as for Fig. 1, i.e., �1,1�0�=1. The trap is part of the
system, i.e., it directly enters the Hamiltonian H. Therefore,
unlike a change in �, a change in � leads to no significant
differences for ��t� obtained from the two methods. Never-
theless, varying the trapping strength has strong implications
for the survival probability: At short times �t�2� the sur-
vival probability ��t� is smaller for smaller �. At larger
times the decay is very pronounced for larger � values;
smaller � values do not dampen the oscillations which are
superimposed on the decay. This effect will be weakened
when increasing the coupling to the environment.

V. INCOHERENT CASE

Finally, we consider the limit of strong coupling �at finite
temperatures� when all coherences will be quickly destroyed
and the resulting transport becomes purely incoherent. The
dynamics is governed by a master equation whose transfer
matrix is

T = � Ẽ − Ṽ

− Ṽ Ẽ + �̃
� , �16�

One obtains the parameters Ẽ, Ṽ, and �̃ by fitting to the
PIMC calculations at large temperatures �9�. In principle one

can obtain the transfer rates Ṽ from a golden rule approach
�16�. The matrix T has purely real eigenvalues,

	� = Ẽ � Ṽe�� = Ẽ + �̃/2 � 
Ṽ2 + �̃2/4, �17�

Similar to the coherent case, the eigenstates of T read

���� 	
1


2 cosh �
� e��/2

�e��/2 � , �18�

where �=arcsinh��̃ /2Ṽ�. Now, the classical survival prob-
ability is readily obtained as

P�t� = p1,1�t� = e−t�Ẽ+�̃/2�cosh�� + tṼ cosh ��
cosh �

, �19�

which for not too small t, gives rise to a simple exponential

decay with exponent 	+. Taking Ẽ= Ṽ and �̃�1, one obtains

P�t��e−t�̃/2, which is independent of Ẽ and Ṽ. We note the
difference in the overall exponential decay of the LvNE,
which was proportional to exp�−�t�. Comparing this to the
PIMC results for strong couplings � �at finite temperatures�,
we obtain �̃=2�.

VI. CONCLUSIONS

We have studied the trapping of excitations in dimers
which are coupled to a dissipative environment. By using the
�approximative� Lindblad form of the LvNE on one hand and
the �numerically exact� PIMC calculations on the other, we
were able to specify the range of coupling parameters in
which both methods agree with each other. Moreover, match-
ing the two approaches by appropriately adjusting the cou-
pling parameter � in the LvNE allows to extrapolate the
short-to-intermediate-time PIMC result to—in principle—
arbitrary long times. Since PIMC is numerically exact, the
combination with the LvNE is ideal for also studying large
systems at long times for a broad range of couplings.
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